Stars are born in the midst of large clouds of gas and dust. Local densifications first form "embryos," which then collect matter and grow. But how exactly does this accretion process work? And what happens when two stars form in a disk of matter? High-resolution images of a young stellar binary system for the first time reveal a complex network of accretion filaments nurturing two protostars at the center of the circumbinary disk. With these observations, an international team of astronomers led by the Max Planck Institute for Extraterrestrial Physics was able to identify a two-level accretion process, circumbinary disk to circumstellar disk to stars, constraining the conditions leading to the formation and evolution of binary star systems.
Most stars in the universe come in the form of pairs—binaries—or even multiple star systems. Now, the formation of such a binary star system has been observed for the first time with high-resolution ALMA (Atacama Large Millimetre/submillimeter Array) images. An international team of astronomers led by the Max Planck Institute for Extraterrestrial Physics targeted the system [BHB2007] 11, the youngest member of a small cluster of young stellar objects in the Barnard 59 core in the Pipe nebula molecular cloud. While previous observations showed an accretion envelope surrounding a circumbinary disk, the new observations now also reveal its inner structure.
"We see two compact sources, that we interpret as circumstellar disks around the two young stars," explains Felipe Alves from MPE, who led the study. "The size of each of these disks is similar to the asteroid belt in our Solar System, and their mutual distance is about 28 times the distance between the Earth and the Sun." Both protostars are surrounded by a circumbinary disk with a total mass of about 80 Jupiter masses, which shows a complex network of dust structures distributed in spiral shapes. The shape of the filaments suggest streamers of in-falling material, which is confirmed by the observation of molecular emission lines.
"This is a really important result," says Paola Caselli, director and MPE and head of the center of Astrochemical Studies. "We have finally imaged the complex structure of young binary stars, with their "feeding filaments" connecting them to the circumbinary disk. This provides important constraints for current models of star formation."
No comments:
Post a Comment