Featured Post

Tracking air pollution disparities -- daily -- from space

Studies have shown that pollution, whether from factories or traffic-snarled roads, disproportionately affects communities where economicall...

Sunday, January 15, 2023

Quantum magnet is billions of times colder than interstellar space





A magnet made out of ytterbium atoms is only a billionth of a degree warmer than absolute zero. Understanding how it works could help physicists build high temperature superconductors







Physics



1 September 2022




Ytterbium atom

Ytterbium atoms have been used to make a very cold magnet

Carlos Clarivan/Science Photo Library


A new kind of quantum magnet is made out of atoms only a billionth of a degree warmer than absolute zero – and physicists are not sure how it behaves.


Regular magnets repel or attract magnetic objects depending on whether electrons inside the magnet are in an “up” or a “down” quantum spin state, a property analogous to saying where their north and south poles would be if the particles were tiny bar magnets. However, this isn’t the only property that can be used to build a magnet.


Kaden Hazzard at Rice University in Texas and his colleagues used ytterbium atoms to make a magnet based on a spin-like property that has six options each labelled with a colour.

Advertisement

The researchers confined the atoms in a vacuum in a small glass and metal box then used laser beams to cool them down. The push from the laser beam made the most energetic atoms release some energy, which lowers the overall temperature, similar to blowing on a cup of tea.


They also used lasers to arrange the atoms in different configurations to produce magnets. Some were one-dimensional like a wire, others were two-dimensional like a thin sheet of a material or three-dimensional like a piece of a crystal.


The atoms arranged in lines and sheets reached about 1.2 nanokelvin, more than 2 billion times colder than interstellar space. For the atoms in three-dimensional arrangements, the situation is so complex the researchers are still figuring out the best way to measure the temperature.


“Our colleagues achieved the coldest fermions in the universe. Thinking about experimenting on this ten years ago, it looked like a theorist’s dream,” says Hazzard.


Physicists have long been interested in how atoms interact in exotic magnets like this because they suspect that similar interactions happen in high temperature superconductors – materials that perfectly conduct electricity. By better understanding what happens, they could build better superconductors.


There have been theoretical calculations about such magnets but they have failed to predict exact colour state patterns or how magnetic exactly they can be, says co-author Eduardo Ibarra-García-Padilla. He says that he and colleagues carried out some of the best calculations yet while they were analysing the experiment, but could still only predicted the colours of eight atoms at a time in the line and sheet configurations out of the thousands of atoms in the experiment.


Victor Gurarie at the University of Colorado Boulder says that the experiment was just cold enough for atoms to start “paying attention” to the quantum colour states of their neighbours, a property that does not influence how they interact when warm. Because computations are so difficult, similar future experiments may be the only method for studying these quantum magnets, he says.


Reference: Nature Physics, DOI: 10.1038/s41567-022-01725-6



More on these topics:





#Physics | https://sciencespies.com/physics/quantum-magnet-is-billions-of-times-colder-than-interstellar-space/

No comments:

Post a Comment