Studies have shown that pollution, whether from factories or traffic-snarled roads, disproportionately affects communities where economicall...
Thursday, December 19, 2019
Researchers directly measure 'Cheerios effect' forces for the first time
There's an interesting fluid dynamics phenomenon that happens every morning in millions of cereal bowls. When there are just a few bits of cereal left floating on top of the milk, they tend to cluster together in the middle or around the edges of the bowl, rather than dispersing across the surface.
Now a team of Brown University researchers has developed a way to measure the forces involved in this type of clustering. It's the first time, the researchers say, that these forces have been experimentally measured in objects at the millimeter/centimeter scale. And the implications of the work go far beyond cereal bowls—the results could be useful in guiding the self-assembly of micromachines or in designing microscale robots that operate in and around water.
"There have been a lot of models describing this Cheerios effect, but it's all been theoretical," said Ian Ho, an undergraduate student at Brown and lead author of a paper describing the work. "Despite the fact that this is something we see every day and it's important for things like self-assembly, no one had done any experimental measurements at this scale to validate these models. That's what we were able to do here."
The research is published in Physical Review Letters. Ho's co-authors were Giuseppe Pucci, a visiting scholar at Brown, and Daniel Harris, an assistant professor in Brown's School of Engineering.
The Cheerios effect arises from the interaction of gravity and surface tension—the tendency of molecules on the surface of a liquid to stick together, forming a thin film across the surface. Small objects like Cheerios aren't heavy enough to break the surface tension of milk, so they float. Their weight, however, does create a small dent in the surface film. When one Cheerio dent gets close enough to another, they fall into each other, merging their dents and eventually forming clusters on the milk's surface.
No comments:
Post a Comment