Rather than leaving home young, as expected, stellar 'siblings' prefer to stick together in long-lasting, string-like groups, finds a new study of data from ESA's Gaia spacecraft.
Exploring the distribution and past history of the starry residents of our galaxy is especially challenging as it requires astronomers to determine the ages of stars. This is not at all trivial, as 'average' stars of a similar mass but different ages look very much alike.
To figure out when a star formed, astronomers must instead look at populations of stars thought to have formed at the same time—but knowing which stars are siblings poses a further challenge, since stars do not necessarily hang out long in the stellar cradles where they formed.
"To identify which stars formed together, we look for stars moving similarly, as all of the stars that formed within the same cloud or cluster would move in a similar way," says Marina Kounkel of Western Washington University, U.S., and lead author of the new study.
"We knew of a few such 'co-moving' star groups near the Solar System, but Gaia enabled us to explore the Milky Way in great detail out to far greater distances, revealing many more of these groups."
Marina used data from Gaia's second release to trace the structure and star formation activity of a large patch of space surrounding the Solar System, and to explore how this changed over time. This data release, provided in April 2018, lists the motions and positions of over one billion stars with unprecedented precision.
No comments:
Post a Comment